A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural Network Algorithm
نویسندگان
چکیده
The problem of inverse kinematics is fundamental in robot control. Many traditional inverse kinematics solutions, such as geometry, iteration, and algebraic methods, are inadequate in high-speed solutions and accurate positioning. In recent years, the problem of robot inverse kinematics based on neural networks has received extensive attention, but its precision control is convenient and needs to be improved. This paper studies a particle swarm optimization (PSO) back propagation (BP) neural network algorithm to solve the inverse kinematics problem of a UR3 robot based on six degrees of freedom, overcoming some disadvantages of BP neural networks. The BP neural network improves the convergence precision, convergence speed, and generalization ability. The results show that the position error is solved by the research method with respect to the UR3 robot inverse kinematics with the joint angle less than 0.1 degrees and the output end tool less than 0.1 mm, achieving the required positioning for medical puncture surgery, which demands precise positioning of the robot to less than 1 mm. Aiming at the precise application of the puncturing robot, the preliminary experiment has been conducted and the preliminary results have been obtained, which lays the foundation for the popularization of the robot in the medical field.
منابع مشابه
Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path
Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...
متن کاملA Neural Network-PSO Based Control for Brushless DC Motors for Minimizing Commutation Torque Ripple
This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of voltage and commutation time is estimated by a neural network and optimized with an optimization method named particle swarm optimization (PSO) algorithm analysis. The goal of optimizati...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملForward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کامل